1. Урок № 67. Електричний струм у напівпровідниках. (ВИВЧИТИ: Фізика-11., вид-во «Ранок», 2019р., 272ст., ред. Бар’яхтар В.Г., (в електронному варіанті), *8, ст.43, ЗРОБИТИ: Впр.8(1-3,4)
СТРУМ У НАПІВПРОВІДНИКАХ
Напівпровідники — це речовини, питомий опір яких дуже швидко зменшується з підвищенням температури (Ge, Si, Те та ін.). Із графіка (рис. 3.9) видно, що за температур, близьких до абсолютного нуля, питомий опір дуже великий. Це означає, що за низьких температур напівпровідник поводиться як діелектрик.
Рис. 3.9
3.4.1. ВЛАСНА ПРОВІДНІСТЬ НАПІВПРОВІДНИКІВ
У чистих напівпровідниках між атомами діє ковалентний зв’язок. Кожний атом обмінюється валентними електронами з чотирма сусідами. При теплових співударах атомів якийсь із електронів, отримавши енергію, може покинути зв’язок з атомом — утворюється вільний електрон, а відсутній міжатомний зв’язок називається «дірка», яка є еквівалентною позитивному заряду (рис. 3.10).
♦ За кімнатних температур концентрація вільних електронів і дірок у чистих напівпровідниках мала.
Рис. 3.10
При створенні в напівпровіднику електричного поля вільні електрони рухаються до анода, а зв’язані електрони переходять від атома до атома, заповнюючи дірки. Дірки при цьому переміщуються до катода (як позитивний заряд) (рис. 3.11):
І = Іе + Ід.
Ads by optAd360
Рис. 3.11
Електричний струм у напівпровідниках — напрямлений рух вільних електронів і дірок.
Застосування чистих напівпровідників
Термістори (терморезистори) — напівпровідники, які різко змінюють опір при зміні температури, використовуються як термометри та термореле.
Фоторезистори — напівпровідники, які різко змінюють опір при освітленні, використовуються для вимірювання освітленості (люксометри) та у фотореле (рис. 3.12).
Рис. 3.12
3.4.2. ДОМІШКОВА ПРОВІДНІСТЬ НАПІВПРОВІДНИКІВ
У чистих напівпровідниках електричний струм створює однакову кількість вільних електронів та дірок (електронно-діркова провідність). Якщо до чистого провідника додати малий відсоток домішки, то механізм провідності зміниться.
Донорна домішка. Якщо до чотирьохвалентного силіцію додають невелику кількість пятивалентного арсену, то чотири валентні електрони Арсену утворюють парні електронні зв’язки з атомами Силіцію. П’ятому валентному електронові зв’язку «не вистачає», тому він легко покидає свій атом — утворюється вільний електрон, а домішковий атом стає позитивним іоном, закріпленим у вузлі кристалічної ґратки (рис. 3.13, а).
Провідність таких напівпровідників електронно-діркова зі значною перевагою електронної. Така домішка називається донором («той, що дає»), а напівпровідник — домішковим напівпровідником n-типу (негативний).
Акцепторна домішка. За наявності в чотирьохвалентному напівпровіднику тривалентної домішки (наприклад, In) атом домішки захоплює із атома основного напівпровідника валентний електрон, тим самим поповнюючи недостатній ковалентний зв’язок. При цьому він стає негативним йоном, закріпленим у вузлі кристалічних ґраток, а в основному напівпровіднику утворюється рухома дірка (рис. 3.13, б).
Ads by optAd360
Така домішка називається акцептором («беручий»), а напівпровідник — домішковим напівпровідником р-типу (позитивний). Провідність напівпровідників p-типу електронно- діркова з явною перевагою діркової.
Рис. 3.13
Контакт домішкових напівпровідників р- і n-типу (р—n-перехід)
У контакті напівпровідників р- і n-типу відбувається взаємна дифузія електронів і дірок та їх нейтралізація, унаслідок чого виникає запірний шар. У запірному шарі створюєтьсяелектричне поле , напрямлене від п до p, і контактна різниця потенціалів 1 — 2 (рис. 3.14).
Рис. 3.14
Одностороння провідність р—n-переходу
Якщо створити поле , напрямлене від р- до n-типу напівпровідника, то запірний шар ліквідується, опір зменшується, струм збільшується (рис. 3.15).
Рис. 3.15
Якщо створити поле , напрямлене від n- до p-типу напівпровідника, то запірний шар збільшується, опір збільшується, сила струму зменшується (рис. 3.16).
Рис. 3.16
Напівпровідниковий діод — це пристрій з р—n-переходом (рис. 3.19, а).
♦ Діод у колі змінного струму діє як випрямляч: пропускається струм тільки в одному напрямку (рис. 3.17, 3.18).
Рис. 3.17
Рис. 3.18
♦ Вольт-амперна характеристика напівпровідникового діода показана на рис. 3.19, б.
Рис. 3.19
Напівпровідниковий тріод (транзистор) — пристрій з р—n—р- або n—р—n-переходом (р—n—р-транзистор, рис. 3.20).
Рис 3.20
Напівпровідникові елементи (діоди, транзистори) є головною частиною сучасних електронних пристроїв (від калькулятора чи комп’ютера до систем керування супутниками).
2. Урок №68. Практикум з розвязування задач з вищезазначеної теми.(ПОВТОРИТИ: Фізика-11., вид-во «Ранок», 2019р., 272ст., ред. Бар’яхтар В.Г., (в електронному варіанті), *8, ст.43, ЗРОБИТИ: Впр.8(5,6)
Приклади розв’язання задач розділу «Фізичні властивості напівпровідників»
Задача 2.1.1.
Обчислити положення рівня Фермі відносно дна зони провідності при температурі 400 К для кристалу кремнія з концентрацією донорних домішок .
Розв’язання.
Потенціальна діаграма напівпровідника з електронною провідністю має вигляд приведений на рис.4. Необхідно визначити значення .
Рис. 4. Потенціальна діаграма напівпровідника з електронною провідністю
Рівень Фермі відносно дна зони провідності визначається залежністю ,
.
В невиродженому напівпровіднику з електронною провідністю концентрація електронів менша ніж максимально можлива концентрація електронів в зоні провідності , тобто і рівень Фермі розташований нижче .
Для визначення необхідно обчислити , , для умови завдання.
Температурний потенціал , В дорівнює
.
Для визначення концентрації основних носіїв електронів необхідно обчислити концентрацію власних електронів в кремнії при .
.
Ефективні маси електрона і дірки по відношенню до маси вільного електрона та , а також ширину забороненої зони для спрощення будемо вважати незалежними від температури і використаємо їх значення при .
; ; ,
Тоді 1/см3.
Оскільки концентрація власних електронів значно менша концентрації донорів , то ,
; 1/см3.
Підставляємо значення в вираз для
В.
Висновок.
В напівпровіднику з електронною провідністю рівень Фермі лежить вище середини забороненої зони. Для кремнію В.
Отримана відповідь В , що відповідає теорії.
Задача 2.1.2.
Визначити концентрацію основних та неосновних носіїв заряду, питомий опір домішкового напівпровідника, відношення питомої електронної і діркової провідностей для умов задачі 2.1.1. Рухливість носіїв заряду припустити однаковою для власного та домішкового напівпровідника, тобто вплив домішок на рухливість не враховувати, а враховувати тільки вплив температури. Як зміниться результат задачі, якщо цього припущення не робити? Виконайте ще раз всі обчислення з урахуванням концентрації домішок і температури, порівняйте результати і зробіть висновки.
Розв’язання.
Концентрацію основних носіїв заряду взяти із умов задачі 2.1.1: ; 1/см3; 1/см3
Визначимо концентрацію неосновних носіїв заряду при .
, 1/см3.
Питомі електронна та діркова провідності визначаються виразами , . В умові задачі сказано, що необхідно спочатку обчислити та без врахування впливу домішок, але з врахуванням температури.
Температура впливає на рухливість електронів і дірок. Для кремнію згідно з виразами та при , см2/Вс, см2/Вс маємо:
см2/Вс
см2/Вс.
Питома електронна провідність обчислюється за формулою
.
Зробимо перетворення розмірностей.
.
Обчислимо значення
См/см
См/см.
Відношення провідностей складає .
Питомий опір домішкового кремнію n-типу визначається виразом
. Підставивши числові значення отримаємо Омсм.
З урахуванням впливу температури і домішок на питому провідність і питомий опір результати обчислень зміняться. Необхідно спочатку визначити рухливість носіїв заряду для заданої концентрації донорних домішок 1/см3. при , а потім для знайдених зменшених значень рухливості обчислити, як вони ще зменшаться при нагріванні до .
Домішки зменшують рухливість рухомих носіїв заряду відповідно з виразом , де 1/см3. В кремнії при для електронів складає 1500 см2/(Вс), для дірок – 450 см2/(Вс).
Отже для 1/см3 маємо
см2/(Вс) та см2/(Вс).
Під впливом збільшення температури ці рухливості електронів та дірок ще зменшаться, отже
см2/(Вс) та см2/(Вс).
З урахуванням впливу температури і концентрації домішок
См/см
См/см.
Відношення .
Питомий опір зразка , де повна провідність . Для зразка з електронною провідністю при 1/см3 та , тоді і Омсм.
Висновок.
Порівнюючи результати розрахунків провідностей та питомого опору в умовах, коли концентрація основних носіїв визначається концентрацією донорів , а вплив концентрації незначний, бачимо що збільшення концентрації домішок при сталій температурі зразка приводить до зменшення рухливості носіїв заряду, а отже до зменшення питомої провідності і збільшення питомого опору.
При збільшенні температури зразка при сталій концентрації домішок, різко збільшується концентрація неосновних носіїв за рахунок збільшення концентрації . Ті властивості напівпровідникових приладів, які залежать від концентрації неосновних носіїв, також будуть різко змінюватися із зміною температури. Максимальна робоча температура – це така температура, при якій величина власної провідності стає сумірною з домішковою провідністю, тобто коли .
При аналізі результатів розрахунків видно, що зменшення рухливості носіїв при збільшенні температури виявляє основний вплив на збільшення опору зразка.
Задача 2.1.3.
При якій температурі концентрація власних носіїв заряду у бездомішковому напівпровіднику буде дорівнювати концентрації основних носіїв в домішковому напівпровіднику для умов задачі 2.1.1. Пояснити отриманий результат.
Розв’язання.
З задачі 2.1.1 концентрація електронів складає , 1/см3.
Знайдемо температуру, при якій 1/см3. Підставимо значення з задачі 1.1 у формулу
,
тоді
1/см3.
Необхідно знайти таке значення температури , при якому виконується це рівняння. Найпростіше розв’язати рівняння методом підбору. Для кремнію концентрація 1/см3 досить велика, бо при , 1/см3 тобто шукана температура значно перевищувати . Максимальна робоча температура кремнійових напівпровідникових приладів досягає . Починати підбір необхідно саме з цієї температури (табл.2.1).
Таблиця 2.1. Результати розрахунків концентрації власних носіїв
Температура , Концентрація ,1/см3
500 3,541013
600 4,061014
700 2,401015
800 1,01016
Висновок.
Отримати таку концентрацію власних носіїв в кремнієвому приладі практично неможливо, бо температура при якій вона досягається, на перевищує максимально допустиму.
Задача 2.1.4.
Визначити значення дрейфового струму через стержень довжиною 5 см з площею поперечного перерізу 0,5 см2 до кінців якого прикладена різниця потенціалів 10 В (рис.5). Визначити середню дрейфову швидкість електронів і дірок. Числові значення взяти з умови задачі 2.1.1
Розв’язання.
Рис. 5. До умови задачі 1.4
Під дією різниці потенціалів в зразку з електронною провідністю виникає дрейфовий струм електронів та дірок. Середня дрейфова швидкість рухливих носіїв заряду в напівпровідниках залежить від напруженості електричного поля. В слабких електричних поля, для яких дрейфова швидкість рухливих носіїв заряду значно менша теплової швидкості , дрейфова швидкість лінійно залежить від напруженості електричного поля . Ця залежність зберігається до критичного значення напруженості електричного поля , при якій дрейфова швидкість стає сумірною з тепловою швидкістю .
Значення для кремнію та германію при наведена в табл.2.2.
Таблиця 2.2. Значення критичної напруженості
Критична напруженість поля, В/см Кремній Германій
Для електронів 2500 900
Для дірок 7500 1400
За умовою завдання напруженість електричного поля значно менше критичної В/см, що дозволяє застосувати закон Ома для визначення сили дрейфового струму .
Питомий опір зразка при температурі і концентрації донорів 1/см3 обчислений в завданні 1.2 Омсм. Тоді
А.
Середня дрейфова швидкість електронів і дірок обчислюється для рухливостей визначених при і 1/см3
; см/с
; см/с.
Висновок.
Невелика дрейфова швидкість руху носіїв заряду в напівпровідниках є одним з обмежувальних факторів швидкодії напівпровідникових приладів. В сильних електричних полях В/см вона наближається до середньої теплової швидкості. Для кремнію при максимальна швидкість складає для електронів 1107 см/с, для дірок 0,8107 см/с.
Задача 2.1.5.
Визначити густину дифузійного струму для стержня з геометричними розмірами з задачі 1.4, якщо концентрація домішок змінюється за лінійним законом від одного кінця стержня до іншого на порядок. Пояснити рівноважний стан такого стержня (рис.6). Побудувати потенціальну діаграму. Визначити величину і напрям внутрішнього електричного поля цього неоднорідно легованого напівпровідника. Використати числові значення умови задачі 2.1.1. Пояснити отримані результати.
Розв’язання.
Пояснення рівноважного стану стержня.
Рис. 6. До умови задачі 1.5
В робочому діапазоні температур напівпровідникових приладів всі домішки іонізовані. Концентрація електронів на кінці 2 зразка (рис.6) більша ніж на кінці 1, тобто існує градієнт концентрації електронів і виникає дифузія, яка породжує внутрішнє електричне поле в зразку. Поле створюється некомпенсованими об’ємними зарядами нерухомих іонів і об’ємним зарядом електронів, які перейшли в результаті дифузії ліворуч . Напрям поля позначений на рис.6. Електричне поле в зразку породжує зворотний дрейфовий рух електронів, тобто дифузійний струм компенсується зворотним дрейфовим струмом. Струм в зовнішньому колі зразка відсутній . На потенціальній діаграмі напівпровідника стан рівноваги характеризується горизонтальністю рівня Фермі.
Обчислення густини дифузійного струму.
Струм в зразку створюється не тільки основними, а і неосновними носіями – дірками.
,
де та – градієнти концентрацій основних та неосновних носіїв заряду, та – середні по довжині зразка коефіцієнти дифузії електронів та дірок.
см-4.
Концентрації неосновних носіїв дірок на кінцях зразка визначаються з умови термодинамічної рівноваги , .
Концентрація власних носіїв в кремнії при визначені в задачі 2.1.1. 1/см3.
1/см3
1/см3
см-4
Градієнт концентрації неосновних носіїв дірок значно менший ніж градієнт концентрації електронів і при розрахунку густини дифузійного струму ним можна знехтувати.
Коефіцієнт дифузії в неоднорідно легованому напівпровіднику змінюється по довжині зразка, бо змінюється рухливість електронів по довжині зразка.
На кінці 1 зразка маємо . для та 1/см3 визначено в задачі 2.1.2 і складає см/Вс. В. Тоді см2/с.
Визначимо коефіцієнт дифузії на кінці 2 зразка.
Для його визначення необхідно розрахувати рухливість електронів для концентрації донорів 1/см3 і температурі .
При
см2/Вс.
При
см2/Вс.
Коефіцієнт дифузії
см2/с.
Середнє значення коефіцієнту дифузії електронів
, см2/с.
Густина дифузійного струму
, А/см.
Побудова потенціальної діаграми.
Побудову діаграми необхідно почати з проведення горизонтального рівня Фермі (рис.7.), тому що зразок знаходиться в рівноважному стані .
Оскільки на кінці 2 зразка концентрація донорних домішок більша ніж на кінці 1, рівень Фермі наближається ближче до дна зони провідності на кінці 2 ніж на кінці 1, де і потенціали дна зони провідності на кінцях 1 та 2 зразка. Різниця потенціалів обчислена в задачі 2.1.1. Вона складає 0,25 В.
Рис. 7. Потенціальна діаграма до задачі 1.5
Різниця потенціалів на другому кінці зразка визначається виразом
і складає
В.
Обравши відповідний масштаб відкладемо на діаграмі від рівня Фермі і та отримаємо точки та . Сполучивши точки визначаємо розташування дна зони провідності відносно рівня Фермі.
На потенціальній діаграмі відкладемо в масштабі від потенціалів точок та ширину забороненої зони кремнію В і отримаємо точки та . Пряма лінія між точками та визначає розташування стелі валентної зони відносно рівня Фермі. Перепад електричних потенціалів по довжині зразка визначаємо як .
В.
Напруженість електричного поля в зразку дорівнює:
; В/см.
Висновок.
При будь якому розподілі концентрації домішок в зразку і будь якій температурі зразок знаходиться в рівноважному стані і не є джерелом електричного струму. При наявності градієнтів електричного та хімічного потенціалів, тобто при наявності дрейфового та дифузійного струмів основних та неосновних носіїв в зразку таке можливо лише при одній умові і ці струми течуть в протилежних напрямках.
Орієнтовні теми для навчальних проекетів – презентацій
1. ЕЛЕКТРОРУШІЙНА СИЛА.
2. ЕЛЕКТРИЧНИЙ СТРУМ У МЕТАЛАХ.
3. ЕЛЕКТРИЧНИЙ СТРУМ В ЕЛЕКТРОЛІТАХ.
4. ЕЛЕКТРОЛІЗ.